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ABSTRACT: The object of the present paper is the derivation of the solutions 
of the problems in heat conduction in the following domains: 

D2 defined by - <» 

D2' defined by r 

D,' defined by - oo 

D defined by - <*> 

D defined by C 

D defined by 
3 

D~ defined by 

<*> i C s i 

K      <  '-*•• 

X  «C  --C 

a 

> - 

0 « > as a 

£<D     >    (_ 

C  <  -x  < 

0 s x    s a i C 

<; * 

u. ^ * ,    C 

} 

} 

- 

• 

In the absence of a better term the above domains which extend to infinity in 
certain directions but remain bounded in other directions have been celled 
quasi-infinite. 
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This report contain* a method for the calculation of temperatures in certain 
quasi-infinite two and three dimensional doaains.    It is applicable to the 
solution of eoae types of heat transfer probleas.    The results are distributed 
to outside research laboratories for information, and for use in the solution 
of probleas in heat conduction.    This work was sponsored by the Office of Haval 
Research, project nuaber HR-044-OO3, entitled "numerical Analysis."     y\jy..7 
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Part I. Heat conductj.on in the domain Da 

Section I. Boundaries kept at prescribed temperatures. 

It obviously suffices to consider the case when the temperature is jrescribed 
on one of the boundaries, say u-=0, the other boundary being kept at" 0°C. 

Accordingly the mathematical formulation of the problem is as follows: 

0 (i) 

T 

TC ~A (T?  + a7'M T (x,t,.-TJ 

t  -,0 
T(x, r,t } -- f f x, j-) 

T[X,C;T)     r  <f   {   %%X) 

T[*\-X;X)   =    0     • 

(2) 

(3) 

To solve the system T we put 

(5) 

where  u(x,^,-t)  and  />W v,y;£)  satisfy the differential equation 

(l) and the following initial and boundary conditions 

t ->0 f-9 

( »,0;t)  =  <fl   *;t) 

u i x, o.,t)   -   0 

i. 

t-*0 '  ' ' 
m  f i % Y 

v (*.0;t) s 0 

fi?   ( x , a.;t) 0 

The Laplace transform 

J Ik 

(10) 

(11) 
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must satisfy the system 

JL .  -k. )   «  f *, i, A >  = ° 

* ixta;f>)   -  o   . 

The expression 

(12) 

(13) 

(u) 

./-•m a ( x  - ? ) d £ 
(15) 

where   /*   s  v 4" f °('    *8 re*dily B**n *° eatiefy the last three equations. 

If we put 
•*t 

then (15) yields« 

u  * * • V • l}    =    "tT /  dcc j    yur% * • * "?; d 5 

(16) 

(17) 

In order to evaluate the function     y  ( >; *, ex.)     we associate with (16) the 
Integral equation 

e      6(u: t) dt 
•» 9 

•d^srJL *i (a. - ui (18) 

where       ^    =    ff- 

p by        ^>   * --:<*" | then (18) becoaes 

.    Since (18) mat be an identity in p, wc nay replace 

whence 

f ( ^•,t,*-' (19) 

mew> II-II ~"^g",~- 
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Substituting (19) in (17) and making use of the identity 

r -*«•*        ,   ri, sir     -^ (20) 

(See   [1]    , p. n)m 

we get 

u(*>'?>t}   =    JTuT [ **} - '"  l"* ?'*.•'-*> *(•**'<* •   (a) 
.*> •* © 

Prom (18), the Inversion Theorem yields 

1 ' iff-     J,  -.- JJn*4. U.   o 

(22) 

where  yu. = J A- , and 0"*  is chosen so that the poles of the integrand are 

to the left of the line  <r - •. *» , j- * «. *» . 

(See [2] , n.7l) 

It may be verified that 

I FUJI   -   je"   "<^/*"•»'[    <    CR* (23) 

where      *  * R »'*     ,     - n-  •<   e   s  rj *   ,       n     >    R,       where    R„ ,   C     and k 

are constants and      A   >   C     .    Under these conditions, it is known that 

<J> ( y; t J becomes equal to the sum of residues at the poles of F ( X ) . 

(See above reference p. 76) 

We thus obtain 

(24) 

${rj)   z JJUL.T^^ £L£t.e"  L 

4*
e 

"lumbers in square brackets refer to items listed in the bibliography. 
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In view of (24), (21) becomes: 

(25) 

• / d5 / ^-- F ^s'-xj • e     dI • 

In the upecial case when <p   is independent of * so that our problsai becones 

one-diaensional, bearing in aind the identity 

—1Lgr   I~ ;^ d* = / (26) 
2 v n A1       V— 

(This follows by ax. obvious transformation from the known identity 

I    e du. » ATTT .) aquation (25) becomes 

u.( ^;f; r -i^L_ y   ,n..u.«»  ^*-    I   f [XX)    e  *  dT      (27) 

in agreement with the result given by Caralaw [ 1^ p. 100  ; 

DariTation of solution vd.v:t) 

The Laplace transfora A- '{ *, y ,p)    of v(x,y*t) must satisfy the following 

differential equation and boundary conditions! 

In view of the identity 

it follows that 

/zr •(».y;^ - -irj[*wti I ~;t':.-.%r:"',J <* *(ai 
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will satisfy (28) and (29), provided thftt 

$ ( « ,  - «j  * ) -n a )     -    - * f < , <f) 

From (31) It follows that 

0     <L 

t /r.    r   *  i     N     f 3 

• M*'*fi')* 

y. c<ro at (A - $ >   A-4HL /) ( y • T{)   da. dfi 

In view of (32) and (20),  (33) becomes 

. Iyi| - >~tt .   'y'r, - !*•>) 

dq 

Proo the Identity 

\~^ 1 m ft *'i   •   yn*« *T *       '^^ 
(*/••*>//r 

Vnf 

(32) 

(33) 

(34) 

(35) 

1 

by soae obvious transformations we obtain the identities: 

».'nt 

l^ti - j»»< 

X^t»   -«^ (V-v) 

In view of (36) and (36'),   (34) becomes 

A/w v f 

(36) 

(36-) 

(37) 
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In the special cast when f (x,y) becomes a function of y only (37) becomes in 
view of (26) 

'- (y;t '    --    -£- ) 4^ ££* / xu^ ^-3- • e  *  f(rj) d^     (38) 

In agreement with the result given by Carslaw [ l], p. 180 

In conclusion, the final solution of the system T Is given by (5) In conjunction 
with (25) and (37). 

Section 2. 

Boundary y=0 kept at temperature      jp, f x : tj j temperature gradient   '/, < f, t,) 
pre*<>ribed on y=a.    Initial temperature f{x,y). 

In this case we put 

n, .-f,n   -   ",t*,);t)   *   •*,'*,*;" f -'lx,y,'      ^ 

where      u, ,    ut      and    «/•    satisfy the differential equation  (l) and where 

Uo) 
<i&r>V   lyu( K      u •   t )       *        0 

t  *0 * 

(a) 

g-  u, I *,f,t )     --     0 for     y  r a '**' 

r -»0        ' * 
(43) 

., f « . 0 ; t >    *    0 (U) 

4- iv, ( A . y; l •     *     «?  ^ : t i      fcr    y. = a (45) 

<t/- ( A, 0; t J    =    0 U7) 

^-/i/;/,^;t)     =     0 for      tj : a      . (48) 

6 
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PerlvaUoff Of PQlvttrPP UifoiYjt) 

The Laplace transform    «*,( x, u;^J    of    a, ( x, ^ -%t)     ie given by 

where   /?  -  ^ it- + <*    .    From U9) it follows that 

where 

By analogy with the developments in Section 1 we have 

*t    wh«re 

where     ^ = ^/-^-    .    Moreover, as in Section 1, the value of    $(Yjt>       is 
obtained as the sum of the residues of 

where     a. - y-^r-      .    Thus we ultimately obtain 

li„*0 *<*,  <*~*'>n? •*• (52) 

In view of (51),  (52) and (20),  (50) becomes 

'.>?'' 2 a.'     / la, 

.     *" (53) 

I 
r- 
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la the special ease where the function pt    le independent of x   , equation 
(53) reduces to 

*, (y;r' = — 2_/i-* 'J^ —~—*- 
«n«j 

/r      A^^/VT (54) 

'0 

Derivation of solution ^(x^/it) 

The counterpart of (50) ie 

^*r*»^'s^/^£f.7f;rV^^f---^»-'*-5^l (55) 

where      /? = yfeTZ1   , whence 

(56) 

where, now 

Proceeding AS la the prerious cases, we have 

1>ty,t,~J-   t f ^;t>l (57) 

where the expreeelon for  $ (%;t)        le obtained as the mm of residues of 

'<*> • "p&p 
at lte poise. Thus ws finally gst 

la *lew of (58),  (57), and (20),  (56) 

'L6lL* (^t'x)'e   •• 
-<$#    ^«#^       , (59) 

•   1      ox 
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In tho special casa vhare     y>     is independent of   x    equation (59) in *isv of 
(26) UCOMI 

'    « * a.      /- 'a 
m -0 

/* M-f/to (60) 

PtrlnUgp at BgluUgBid.T.V) 
The solution T(x,y;t) is e   y identical with the solution of the problem of 
boat conduction In a slab oi  ><ekneaa 2a, wbot* bounding pianos art kept at 

0°C, Initially at a tenperatui-e $ (*»j) defxead by 

$(x,2«.«*j .- f U,y; 

This loads to 

f** 0   < 
>' 

a. 

>^ 
a. < ^< /a. 

{^r,-; V* 

(61) 

Mhon tho Initial teaperature is lndopondont of x, tho laat aquation with the 
aid of (26) 

(62) 

Tho roault in (62) la not giren by Caralaw; it any hovsvar bo derived froa bin 
eolution *n"  [ p. 68 1 and it ie found to agree with (62). 

In conclusion, tho final solution of our praaact prebice is given by (39) In 
conjunction with (53), (59), and (61). when tho boundary y-u is impervious to 

asat, uJ*,};t) '  °   «•*   Tf».*;tJ = u. :*>*;" * «*. <>.»•;'>  • 

Soetion 3. 

Badiatlon at tho boundary y*C into a median at toaparatura   pt (*; t)        ; 

boundary ywa kapt at tho tsnparatura   <p   (* ,t) . Initial tanparaturo 
*(*.y). 
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In this caas va pot 

(63) 

whara  u., ,  u., , /tr, and A--  AT* solution* of (1) satisfying tha following 
Initial and boundary conditional 

r -»#     • 

*>( x,a.;t)  * 0 

t-*t 

(T9 '*-)"*i*>f'M *A*it*.0;t)     f* p-0 

-v*. ( *, * i t)  « 0   • 

In tha apaelal oaaa. whara  p, (x,rj » o<     , i.%.  whan radiation takaa plaoa 

at yO into a nadiva at 0°C, It la elaar that u., (* , u<t)  - 0 . lararthalaaa, 
It will ba notad that tha Initial and boundary condition* aatlsfiad by nrk ( x,y;t; 
am ainllar to thosa aatiaflad by  u., (*, u; t)       . Thma tha foraal solution 

«., f«»y 1f)     for  p, (*',t) ? o   -   is naeaaaary for obtaininf  */•, (* #y ; tJ 
' avan In tha apaelal oaaa whara radiation at y"0 takas plaoa into a nadlvs at 0°C. 

10 

I 
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Dariration of solution Uitx^jt) 

Tba Laplace transform   **'{*,%;£)        i8 •••Hy obtained in tba form 

where ^ * /jTTI7  , chance 

/--avr 
y tf    -or* - (' x - ^ dm. (^) 

uhara   j> ( ^ ; t ) is equal to the SOB of the residue* of 

f-l4>)  » e    ^—*- * . .— 

where  a * /3T   » at its pole*. Ha ultimately obtain 

« / f / . ^ _*i -6 . r • i 

«CA' 

[(i**A).A * C^'J  ~*C. 
(65) 

where tha raaaatiou axtands over the roots of th* transcendental aquation 

C   * *4 U~ C = 0    • (66) 

In Tiew of (65),  (6a) 

C (67) 

'-•• st 

U 
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where the summation extends over the roots of (66). As in the previous cases, 
when the function <p      is independent of x t  (67) reduces with the aid of 
(26) to 

L. [  (' ' -A) •*>*    '.') '-"  C„ 
(68) 

where the summation extends over the roots of (66). With the aid of the last 
equation the desired expression for  ut   ( > , * ; r )   becomes 

* i/ (69) 

i 

t .Aii: I 
• / ,, f ft) • e   *'    dt     , 

the summation being extended over the roots of (66). 

Derivation of solution u^x.yjt) 

The Laplace transform        - ut* ( « , y, t> > is obtained in the form 

where    ^ - •/ ^   /  <**     .    It ic clear that       ua ( « , «j; t ) is given by a 

formula similar to (64), except that p>_   .   * , t / ie replaced by   ^  ^.f'.O 

and 4   ( ¥ , * J ^as f°r ^tE Laplace transforn. the expression 

where <*.   :  ^ * .As before <£.   ( .  , f )       if given by the sum of 

residues of the above expression multiplied by the factor    e .    Accordingly 
we get 

5 ill»#.A)iA»c:j «. c ! 

12 
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the summation extending over the roots  of (66). 

Derivation of solution v^(x,yit) 

By analogy with the developments in Section 1, the Laplace transform - . 1*.<J;P) 

ie given by (31) where   4 ( * ; y ) satisfies x,he conditione 

\ #(«,-' t * ¥*a *•*•;»-* («.>J 

From (31) and  (70) it follows that 

0     <•   H   *    a 

m. x » ftti,t 3, .-     * •* 
(70) 

(71) 

Making use of the identities  (36) mad  (36'),   (71) becomes after some obvious 
transformations ..   ..... «, 

• •I 

/- ^   /• <72) 

• / e       ^ / fit,*))*** l"Vltn     «*!)     . 

Derivation of solution v2(x,y;t) 

Comparing the initial and boundary conditions satisfied by      ir ( x , y ) t) 

with those satisfied by       u, ( x , y, t ) we conclude that the expression of 
v, ( K , ^ ; O       may be obtained from ( 64) by repl cirg        ^ (A, r.' 

by    - *rt t * ,0'ft)    .    Thus 

] rff y v,(f,();.t-r)   f       e^Y* dt 

(73) 

13 
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where nr,  ( x , o ; t ) is obtained fron (72). 

In conclusion the desired solution  T Ix, u; H  is obtained from (63) in 
conjunction with (67), (69), (72), and (73). 

Section A* 

Boundary y=G radiating into a nedlua at temperature f,(i,t)     5 temperature 

gradient y>   { % , t )      prescribed on y=a. Initial temperature  * ( x   *+)       • 

In this case we put 

T( x, y ; t) .   »,( > , j; ' )  t  ",( *. ^, r ; ' '.,(», y ; •'; * +1 ( M , y; t)  (74) 

where      '<.,    ,       u,   »     •"•,    and     ^    satisfy the differential equation (1), and 
the following initial and boundary conditions 

c*ywr*        u.,  ( x >   u •   t J     -    O 

j~f       *,   <X,?,t/   '     0 for      p  r* 

*C^-     ut (A, p; t)   -" 0 
t +0 

(T;-*) "J*,?:1* ' o for   f =• 0 

7-     ^J^,H:t)=    <pj*,t) lor      H-a- 
a y 

T   +0 ' * 

j-  *: (x ,r, I)  = 0 Ur    y = 0  ar,d    y =*- 

~   A;  (»,'|-t)  •- 0 for     y, - a 
7 

0 
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Derivation of solution u^(x,y;t) 

The expression of the Lapiaoe transfers la 

"*{*,?,+)-- ~J d* f   *(\\ + )  t'lyifa^J   ***»(*-?; <*$ (75) 
*• J-wm 

where 

' 7' f+i.Jffi*,    t   JtA^t&fia - (76) 

with 0 x  •/ ^ * <*' •    By analogy with the developments in the previous 
sections, we hare 

where the expression for <j>   Z' y ; c y is giren by the «eun of the residues 

of       e*' 4>'(y,^J       where $*(?;•?) is obtained fro»    f*(y;£,<*) 

by replacing    /$    by       g.   = y^| 

In this asunier, we finally get 

u., (x   u,.t)   -- ^S- •  \    ^  e -   ±gJL>-L^JJ 

/•-     /'-*¥:   -fey* (77) 

where the suaaation extends over the roots of 

C,     Jta/n. I,   - &-h 

Derivation of solution u2(x,yit) 

The expression of the Laplace transform is 

where 
(80) 

(78) 

(79) 

15 

.1 
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Proceeding as abors, we finally gat 

/-./-• 

(81) 

tba eueeaation being extended o^r the roots of (78). 

DarlTatlon of solution r^(x,jjt) 

By analogy with the developments in Section 1, the expression for   /»/. ( x, n; U 
Is given by (33) where        <J> (x , ^j satisfies the conditions 

0 <. w, 5 a- 

*•« •»*',«', 

$/*»*• **•*> = f <*,y) 

With the aid of these conditions, (33) yields 

In view of (36) and (36'), the last equation beconee 

•77 •£•» ^ 

(82) 

In the ease where the initial temperature distribution is a function of y only, 
the last aquation becomes 

"*" *'*',*) ' f/^)dit • -f) e"   *    ***2* Tity ***•&- *i 
(83) 

*6 
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Derivation of solution r2(x,j;%) 

JTOB the initial sod boundary conditions satisfied toy       "i ( M ,   y ;  t  )      and 

xt.,  ( x , u ;   t ;  it is clssur that the expression for      A-, (   * t y ;    t )     »ay be 

obtained froa that of    u., ( * ,   y ; t )   by replacing    y>, ( > ;t) by  - <v; ^ x,  o; f ) . 

Thus 

k   e        "**;«['•*). 

a' f*« 
(*A) 

where *r, (  x , o • t )      is obtained froa (82) and where the suenation extends 

orer the roots of (78). 

Section 5. 

Boundary y=0 radiating into a aediu« at temperature        cp,   ( x , t )        ; boundary 
y*a radiating into a aedlua at tenperature      <pt ( i -t r) 

In this ease we put 

T( M ,  y; t)   s    U, (  X , y; t  j   *   «•»(  X ,   y; * J    f   ^   ( X ,   y ; t )   f  4T ( % f p; t) (85^ 

where it, , «*, ,  >v,  and  /«/; satisfy the differential equation (l) and the 
following initial and boundary conditions 

&rr» U.   (A  ,   «  *   t J       *     0 
t   +0 * 

X^.      u:  (*,y; t)    --0 

(%-**) *>t*> V>t} s mKrJ*iO f"   » £0 r        u   : a. 

17 
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r -»o 

—"^   ; O ior     u. = 0    ntd     u - a 

/-   "i  («.^;?> :   A{"^ *,?/*>* v,/ x^;^j      for   ^ = 0 

| ^T ^ * *'»»t; * *•*{">(*>*;*)* ~>{ *> v;t;^   /{pr4 

'y 

of la the abore h   anst be pot equal to -h.   for reasons discussed at the end 

this section.    It WL J convenient to formulate the boundary condition at y*a in 
tarns of b2 rather than -h,  in order to be able subsequently to obtain the 

solution of two related problens by putting    A,   r *>     or-     Ax - o 

Derivation of solution v^(x,jjt) 

Starting with the Laplaoe tranafom 

""(* ,y,V = fjfl **)   r*(l;t) }*(*.*>«-) ""*•- (*-?<> <<* 

where 

T      ''    ' (4'-^.AJ ~i~A#,.    <   <A,-AJ ft ****/?+• 

(with     /> r   J +  . a*      ) and procseding aa in Section 4 we ultimately get 

'' -»^r  ^ {i •«(*.-vi C- <*^C  M »*V. »a<v*J* Ci **«•?* 
(86) 

7 
•1 !• 

18 
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where the suasatlon extends over the roots of 

(*.5»,/, •  C')^ S    -   A-U.--A.K    «    0     . (g7) 

It is readily soon that if in (86) we put K   - ••   , *• obtain the fonmla 
(67), the suesation extorting over the roots of (66), which moults from the 
substitution   A 7 ~    i» (&7)« If *» (<&> "^ (8?) we put  A4 - o   , 
we obtain the fonenla (77). The avasaaticn extending over the roota of (78) whioh 
resalta froa the substitution   ^ -   0        in (87). 

Derirstion of solution u-(x,y;t) 

Starting with 

where 

with f} r JA. . 4t*      » we ultiaataly get 

»>(>,&*>   *    4 

} "* C 

(88) 

the HI—Mtlun extending over the roots of (87). 

Derivation of solution •1(xtyjt) 

The expression for  ",(*,);*)        1" obviously identical with that of 
Section 4 end is therefore given by (82). 

Derivation of solution v2(x,yjt) 

Free) the boundary conditions satisfied by  /v, < x , ^ j t ;  it is clear that 

s^,^;" - ",(«,y;f^ i(x,^fJ (*9) 

19 

" 
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where u, i x ,  f; t) is obtained from (86) by replacing   •»,(*;*)   by 

- /v, ( x, o - t)       and   £*(*,•¥» t J   i* obtained from (88) by replacing 

</>,.(* ,r)       by - AT, ( x> «-,* t)  where  /IA,( >, «; t)  and <v, ( x^ a.,-1) 

are obtained from (88). 

In conclusion it should be noted that since the condition of radiation into a 
medium of prescribed temperature ie  §-£ -.   x ( T - T )     where h is positive and 

JZ       denotes differentiation along the inwardly drawn normal, it follows 
that in the above developments we must put h *-h_ • 

Fart II. Heat Conduction in the Domain D • 

As in Part I, the general solution of the differential equation of heat con- 
duction which reduces to a prescribed function -?(.« , y.)   for t=0 and satisfies 
boundary conditions of the type 

r (F, t) = ? (P, t) 

£ r (p,t) =  r(?,tj i 

' A. A)    T (P,t)   -.    -Af»fP; 

where P denotes a point on the boundary may be obtained a^ superposition of 
a solution a( x u; t )    which vanishes for t=0 and satisfies the prescribed 
boundary conditions, and a solution v  f x> u,; t )     which reduces to Pl*,f) 
for t=0 and satisfies the homogeneous boundary conditions obtained by replacing 
the second members of the above equations by 0. Moreover, a solution u.(x, u; t) 
which satisfies three nonhomogeneous boundary conditions of the above type for 
the three boiiariaries y=0, y=a and x=0 may evidently be obtained by superposition 
of three solutions, each one of which satisfies earn nonhomogeneous and two 
homogeneous boundary conditions. For this reason, we shall confine ourselves 
to a number of typical problems Involving one nonhomogeneous and two homogeneous 
boundary conditions; we will not, however, attempt to exhaust all possible 
combinations of boundary conditions of this type. 

Case 1. 

Boundary y»0 kept at temperature <p (x, t)       ; boundaries y=a and x=0 kept at 
0°C. Initial temperature -f(x,u.)    . 

Examination of (15) shows that  u* ( x,    u ; -jy)    the Laplace transform of the 
desired solution u. ( xt    u.; t)     «ay * ; obtained by replacing /cwat. ( x - F )   in 
(15) by /c^ro, ac   (x _ {:; - JC^-Q,   <*. C x t %)•    Proceeding as in Section 1, Part 1, 

20 
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\m finally get 

^ //«Wr-**Wj P a.f-t;-*"***.t*dt 

where      £ = '     .In entirely similar Manner, we obtain 

AS   ( *   _   
a.' 

- >i 

/    {e^   -Je^}   4\ £ ( {\„) *± *fr   d> 

with    /  « < It la readily IMO that If In the expressions of    «. r x , y- t; 
and     nr < *t y.; t)     we pat   J«-i   ,    tha resulting expressions are the solutions 
appropriate to the ease where the ho«adary x«0 is inperrious to heat. 

i 

Case Z. 

Boundary x«0 kept at temperature    p L y, t) } bounoarles y»0 and y=e kept at 
0°C.    Initial temperature    f (*, y) . 

It is readily seen that 

where      ^ • />VT       and     «^ r V f ' j£   •    last equation yieldst 

' i>'<*)   "   i )   ++~A»y J  "'"'A? dr) j <p (*i,t-t) 

21 
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where 

It is known that [ 4 forsula (30) 

£ f«; r, A / 
1 •/*-> 

The solution  ^ f * , V • f ' thus  finally becoaas 

»<•.#•«'• jvtr • I a. I a I 

SB 

r-zJ e      e    T  dt  . 

Tha solution nr ( x ,   y.;   T ) is evidently identical with that of Case 1. 

Case 3. 

Radiation at x*0 into a aediua at temperature  / I  / ; t )    • boundaries y»0 
and y=e at 0°C. Initial temperature f  t * ,f)  • 

Tha Laplace transform   </ ( x , y ; /•>   is given by 

wit^  A. * -^T  *•*   *- *  /f* A*    » whence 

m : • 

where 

/ e  A. f «, ?, A^ = -£ ;  

22 
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The solution of the last integral equation la   [Q formula (67) 

(**/)•  i dp 

The expraiaion for u(x,y,t) thus finally becomes 

• I p(*),t-t) • e      '       l' dT  J   e  e    (« '/J <*/> . 

To obtaiz T(x,y;t), va make tha substitution *•• - «r, * »\      where AT,    reduoes 

to f (x.y) for iMi and aatiafias tha condition  i^ - 0 while A/- vanishes 

for t*0 and aatiifiaa tha condition ~*  •  A ( v.* *r.)    . It is than clear 
a x 

that AT,     ia idantieal with the solution v undar Case 1, with i « - / . Also 
tha expression for v2 may ba obtained from tha above expression of u(x,y,t) by 

replacing  p ( y, t )    by - *.-, t o    y, r)   where nsj % ,  f,1)   ** the solution 
just ooBsidarad. 

Case 4. 

Radiation at y=0 into a medium at temperature (f (x \ t)    ; radiation at y=a 
into a medium at 0°C. Boundary x=0 kept at 0°C or impervious to heat. Initial 
temperatare f(x#y). 

Tha expression of u'ljr^jfl may be obtained from that of  u," ( t , ^ ; />; 

of 8aotion 5* Wart I, by replacing <c«* at ( * - f^  by x*u «. f>- \) - ^r» « (» i\) 
in the ease whara tha boundary x*0 is kept at 0°C and by **-*.  *(*-•*; -r -o<-» * (-x • g 

in tha caae whara tha boundary x=0 is impervious to heat. This laada ultimately 
to 

<*l 

23 
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where I • -1  or <5 » '  depending on whether the boundary vO is kept at 0° 
or is inparvious to beet. 

The desired eolution v(x,y,t) nay be obtained froa (82) by replacing 

e     If e '"• it ^^  where  J - - /   or i   « i   depending 

on whether the boundary x»0 is kept at 0°C o. la iaperrious to heat. 

Caee 5. 

Boundary x=0 kept at teaperature   <p ( y, t)    ; radiation at y*K) and y*a into 
a aediua at 0°C. Initial teaperature f(x,y). 

Let   a = u( • u$ * vc} where 

u, ( 0,  y, t)    z    p(f- t) 

i 
0 ind     u i a. •J5    -   0 f e r      u   - D    ind     u. 

a, (0, rf; t)   *    u, ( 0, yt t)     -- 0 

&*' — A u      s \4,»j ( X , 0;l)        for ', - C 
*            1 0                                         f c ^ u  -- a. i 

dV '   '        [0 for    y;0      . 

The solution u,  { x . ^; r >»  nay evidently be obtained froa the expression 
for u(x,/jt) in Case 2 by replacing   „»^«. C±ZL¥ by  z^>  aJZj* 

Thua 

S ' ', 7;«J Jv^7 
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The expression for  u., ( * ,  <f,   r j nay be obtained fro» (86) by replacing 

ft ( x ; t ]    by -u, ( x , O; f; ; similarly u,  (x, ^.; rj nay be obtained 

fros (S8) by replacing  <p% ( x ; 1 )    by  - U| / x , *., I)   . Thus 

where ^ » - /  and the susnation extvindt over the roots of 

By putting /,= 0  or  J1, = <=•*>   we obtain the solutions appropriate to 

the ease where the boundary y*a le either iepervioua to heat, or kept at 0°C; 
sinilarly by putting ht -  o     or   f>i   -.   <*> we obtain the solutions 
appropriate to the case where the boundary y>0 Is either lapervioue to heat 

or kept at 0°C. In the oase where the radiation takes place at both boundaries 
yO and ye Into a nedlue at 0°C It Is necessary to put  j^ s - A,   , for 
reasons previously explained. 

To derive the solution v(x,y;t) we put IT * nr, + ASX     where 

*» 
|^=C        for     ^roand    y * 

.*/•    =0 for x    s   b 

25 
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t r X 

The expression for     A-, (   x,   u; t )    may be obtained from (82) by replacing 

4tf* «*i 

*;>j.,y;r> 

by       e -     c .    Thus 

]  t * & e 
: 

with    . I *s-i 
m 

Comparison of the boundary condition! satisfied by •jfciJiO with those 
satisfied by u^ and u2 leads to the conduaiot? that 

** (*, ?; t}r «*.' *< ?<'f ; ' "** *> *•* r; 

where  a,  and ui     are obtained from u, and Uo by replacing tu(x,0;t) and 

u^Cxta;t) by ^(xjOjt) and ^(xiajt) respectively. The remark made in con- 
nection with the solution of \L and u~ above, applies of course also to the 

solution v2(x,yjt) 

Case C. 

Temperature gradient <f {  y ; t j  on x^)j radiation at y*0 and y=a Into a 
nedium at 0°C. Tnitial temperature f(x,y). 

26 
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In thli cane we put *U+U+\L where 

J7   «*,(,,    y;    I   )   --     fffy:tj f «,,     x    =   0 

ay   l''• ' * . ? ." t) - °        for     y, -. o   and    -u -. 

-r—'      -       ——L 0 f o r      X    -   0 
3* <)i 

|jL.    _ I u       -   \^.*,   ( *, °; l   '        * or     ^ =  0 
'» * 10 r  o,      i(    =  a 

^    -4>ltk      =    /° for       ^.0 

The Laplace transforn of  u-, / x , * ; t ;   ie 

where  ^ » -^   and <*»• -y/4- -r ^ . The last equation fields 

where 

|>M«; *,/U 
VF£ 

It is known that the solution of the last integral equation is [ 4^p.l2,equat.56 

Vn t 
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Thus the expression of ati «, u; t)   becomes 

.Vrr /_ 
1XL \   ^  ^* 
a.* •*.'-»»!<; s-f5*; ^ ** /  ~~ * dr> 

i       - yyf    -i 

p^; f-t) • e  *  • e    T  dT 

Comparison of the bounder-/ conditions satisfied by u. and u with those 

satisfied by u^ and Uj in Case 5, leads to the conclusion that the desired 

solutions u. and u ars given by the expressions given under Case 5 with 

&    • 1. . 

The expressions of n, and u~ are identical with those of Case 5 except that 

now   h    ••    \       . The derivation of the solution v(x,y,t) proceeds in exactly 
the ease manner as in Case 5. Specifically, if we put  AT   -   A.-    *  fJ- 

then Vj is obtained froa the corresponding expression under Case 5 by putting 

h   r i and   /ir / «, y; r; = a ( «, y • t ; •. ",f *, ^; t;    where  d, 

and  d,   are given by expressions identical with those of Case 5 except that 
5=1   . Finally the reaarks made in connection with the solutions 

ui, Uj and v~ °' Case 5 (putting hj = 0, h£ • °° or n2 = -hj) apply to the 

solutions in the present case. 

Part III. Heat Conduction in the Domain D.1 

The prohleaa to be discussed below are the three-dimensional extensions of ths 
problems discussed in Part I, to which we shall frequently have occasion to 
rsfer. As in Part II, we shall confine ourselves to the derivation of solutions 
of problems involving one nonhomogeneous and one homogeneous boundary condition. 
The meaning of the terms •u* solution and •¥" solution ars the same as in Part II. 

Case 1. 

Boundary t*0 kept at temperature p (  x, u;t)  ; boundary s=a kept at 0°C. 
Initial temperature f(x,y,t). 

Derivation of solution n(x.v.i) 

In view of the identity 

28 
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it is readily seen that the expression 

/C*m. at. ( K  - f)   JC^TO- fi ( u - tj)    d «•   d/9 

where        Tf^J-4h*oc*^'        ia the Laplace trans font of the solution 

u(x»y»»ft) vanishing for t»C and satisfying the prescribed boundary conditions. 

The laat equation yields 

<*.*,*;"•  TP / d^ dT> y dT Ir(l>v;   *) 

*(  },T ,<*,0 ) ^""t*   -V     **+A I V))      dec   dp 

tehere 

/    •*' 

t f •OA'T-  X a. 

with 
7     *     ff     *     <*.'  r   fi> 

By analogy with the developments in Section 1, Part I, we can write at once 

where 

29 
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With the aid of this expression for  f   ( };  t, OL , p )     and of identity 
(20) the expression for u(x,y,»;t) finally becomes 

(x 
hm .si 

In view of the identity 

* f*-y»>^    -     ipr II dr dr)d?  Jf   #15,1, 0 

•  x^rttdxf'x-f^ •*s•>/e (y -*)) /&*-* y ^)- CJ  d« d/$ dy 

it follows that the expression 

- 

where, by analogy with the developments in Section 1 fart I 

is the Laplace transform of the solution v(xfy,Zjt) which vanishes for v=0 
and s5=e and reduces to f(x,y,») for t»0. From the expression for/i/* we get 

• xsr* ot ( x -£J x^rc^ f ^ - 9; y^S' y ! j- - O  dec d/3 d* 

30 
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With the eld of the identity (20) end the abov- relatione satisfied by 
d ( < , y , x }   » *•**• •x^ression for/v(x,y,sjt) becomes 

In Tiev of the Identities (36) end (36*) the last equation finally becomes 

. La -ffjVf B-9>' f r 

•i.  £ *^,dJl»   • e"j4^y'MO ^-.-JLS   dC 

in agreement with the result giren by Garslaw  [ lj, p. " 3 

Cue 2. 

Boundary v»0 kept at 0°Ci temperature gradient   <p (x,y;t) prescribed on i«e. 
Initial temperature    f (x,y,s). 

PtrtTltiPB St Wllittffl MJlalaliA) 

The counterpart of the expression u* in Case 1 ia 

u ^.7,>,A> = * l'-"I **>r.+>  -f^fr 

x^a^-5; -Wtt^fy^  df d 

31 

As a test of the correctness of the last result, it nay be noted that If 
f(x.y,s) becomes a function of • only, the last expreseion reduces, in riev of 
(26) to I 



IAVCRD Report a59 

where     7   -   J£•   <*' * fi'     *    The lest equation yields 

& (y,*.<*,fl)   ycm OL f x - ?; /f^» fi ty -*i)    d«x dfi 

where 

/  <•     u- /» • r   «A \ At   « />*M>-.<,^>* •  ,*£$ 

with   7 • V £   *-<*'«• /9' .    ^jr analogy with the developments in Section 2 Pert I 
we here 

• +u~ fV* V*> 
3 X 

With the aid of this expression for V ( >, l, <*, ft )   end of the identity (20), 
the expression for u(x,y,»it) beeones 

IT7*. L_ 
• — :    •: • '-J^l—l f Li 

/. 

c **' d$ di)    . 

PtTlTiUgB of BBeJtUaa gfableliJH 

As in Section 2 Part I the solution /v(x,y,*,t) is identical with the solution 
of the prohlsa of beat conduction in a slab of thioknees 2a, whose bounding 
planes w^-0 and s*2a are kept at 0°C, initially at a temperature    £ (x , u , yj 
defined by 9   ' 

$(*,>.))*    f («, j,)J for c  <   }    ^   a.      and 

32 
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Starting with the eolutioa '/(x,7,i,t) in Case 1 we ultimately get 

>  ( ) a  . //rr'r 

//    - TFT '     '     J f   . Sit,,'"' LLZJLLI *C d? 

Case 3. 

Radiation at the boundary *»0 Into a mediua at temperature /• (x,y,t)j boundary 
••a kept at 0°C. Initial tampersture f(x,y,t). 

The counterpart of solution u" in Section 3 Part I is 

where   x   =  J  &   +   *.' * fl' •    Tha last aquation yields 

't' ( Y>X * ci, P >   't'ro  °iLx -D s^c+0 ( y-?})    1"dfi 

where now 

^rX i f % - oJ 
A^CHA- Yn   *   A 4^^- J'c 
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By analogy with the developments in Section 3 Part I we have 

. USL 

where the suonatlon extends over the roots of the transcendental equation 

Substituting the above expression of y (}:?,*,& >       in the expression 
for U(X,T,«it) and aaklng use of the identity (20), we ultimately get 

u / > u.  \. t )    r   >-  . >  1* _—5 *7  ? T 

C   . hlS-    ^       (I - '•^l'>'V';' 
-^ — 

where the svssation extends over the roots of       £   •  ah Lo.   £  -  o 

Derivation of solution A/(x.r.s;t) 

By analogy with the developments in Section 3. Part I, we put 

^ <*,y,>;tJ  •   *-if*»y,);U   *   "*i*,i,y,*i 

where 

> / • / 

/»/;(*, u , a.   t)    -    0 
> 1 i     • 

aT   *'. '''>*> •>• 1 )       -       0 ^ 0 r 1    s   0 

fc   "•'  ", >. >5 t )    -   o 

AS,   (A . u, 6 : t )   --   c 
'i     '   "  '   7 >       > 

(il ~*J ".' '**»>',*>   :   ^'<.»/;t)     foP >: 
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Derivation of solution nr, (x,y,s;t) 
^mm^mm< m   m        — — — • • i  • |M • in WWWW> MM— •• — MI • ——— 

By analogy with, the developments in Section 3 Part I if we define: 

- 

then the solution /i/(x,y,s;t) becomes successively 

0   <    *     «c    a. 

>   -        >  -      > — 

/»   u  i. f;   s 

• xjm, OL ( * -§> ^<re,y^  ( % ~jt  '<^<ra    "* ( J-" £^    doc dfi   dV 

. U'tf*iYmY*iyW 
dl d^ d^ 

d? dn 

res- r   - Ui c-»*.a-3aj*      _ Lac £ £&6fcjJaJL* 

-2.1e 1H . 
MakjJng uee of the identities (36) and (36') the last equation ultimately 
becosee 

. UOJLJ£M^1 

nr i x ?>> •t)    = 2na.At J. a. 
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Derivation of solution •2(x,y,a;t) 

It ie clear that the expression for v_(x,y,tit) nay be obtained from the 

expression for u(x,y,ijt) by replacing (f  (x,yjt) by -^(x,! ,Ojt). 

Case I. 

Radiation at the boundary s=0 into a medium at temperature </  (x,yit); 
boundary saa imperrious to heat. Initial temperature f(x,y,i). 

Derivation of solution tt(x«r»»;t) 

The formal expression for u(x,y,z;t) is identical with that in the previous 
cases, except that  ^ ( \ •  r , <*, fi )     must be obtained from 

I  e ^(>;t>*,/»;dt = - ^ y> - > ^ /A . 

Proceeding as in Section 4 Part I we get 

A if * )        '"   > . *'   'T 

where the summation extends over the roots of 

(^    Za.iv  r  r fl. A; 

With the above expression for V (*»t, <*• , /? ) we ultimately get 

«[l , e.fj  .  X . f    & IffJiliJ  L 

Where the Emulation extends over the roots of the above transcendental 
equations. 

Derivation of solution v<x.v.i;Q 

As in the previous case we put 

v(x,y»»it) » vx (x,y,«it)*v2(x,y,s;t) 

36 
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Where 
• 

r -»o 

d & ^f *>>.>;t; = °  for    >i0 ahd 3-=c- 

o 
\ 

Derivation of solution A/, (x,y,r.,t) 

The derivation of /Lr(xfy,sjt) follow very closely the developments in Section 
4 Fart I and those of th6 preceding case. If we define 

$ (ft, y, } + *«* J * * I » , y, j-l    ]       C <   £ a 

$ (x , 17., \ *•  2 «i + A)    S f ( x, yt a-j.) J     ^sd • l(i<, ...'t* 

then 

,7  ''•<)'*fyV' 

With the aid of (36) and (36') the last equation becomes 

All -•• 

*0 

wn 

1 

,? .(^-t>;;t(»->»'     /«• 
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Derivation of solution v-^yjXjt) 

It is clear that the expression for *2(x,y,8it) nay be obtained froa ine 

expression for u(x,y,s;t) by replacing y"(x,y;t) by -^(ZfyfO;t). 

Case 5. 

Boundary s»G radiating into a medium at temperature <f  (x,y;t); boundary 
radiating into a medium at 0°C. Initial temperature 0°C. 

As in the preceding four oases, the solution u(x,>,t;t) is given by 

-       x * 

By analogy with the developments in Seotion 5 Fsrt I the function f f j;!, »,fi) 
is obtained froa the inversion of 

where  ? r v' J + «.x ~ px     . The inversion of lest equation yields 

ge> 
-=•    ti^    -k<*'.?'>t 

e • e 

f i *, (/,, - A,)* r, <*-'•• C„   * {.»A. A. * * (\ • A. J • Cl .<** C 

where the ^'s are the roots of the transcendental equation 

( <SA\   •   P* J ta*!;    -    0- ( A - A, J S   •    0      . 

I 
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Substituting the above expresssion of T/-    in the expression of u end Baking 
use of (20) ve obtaint 

,*  . A1LL       .  i.-fAi^.y'     « " 

where the summation extends over the roots of the above transcendental equation. 

If in the expression for u we put ht -   0  we obtain the solution appropriate 
to the ease where the boundary **a is impervious to heat; in this ease the 
summation oust of course be extended over the roots of the transcendental equation 
obtained by putting  J^ = o      in the above transcendental equation. Similarly 
if in the expression of u and in the transcendental equation we put At *  <*» , 
we obtain the solution appropriate to the case where the boundary saa is kept 
at 0°C. Finally it should be remarked that when t>* boundary **a actually 
radiates into a medium at 0°C we must put h^h^ botn in the expression for u 

as well as in the transcendental equation! the reason was explained at the end 
of Part I. 

/ 

Case 6. 

Boundary z=a radiating into e. median at temperature (p  (x,y;t)j boundary z=Q 
radiating into a medium at 0°C. Initial temperature 0°C.   i 

The procedure is entirely similar totthat of Case 5. the expression for u is 
in fact formally identical with that in' formula (A) except that the function if/, 
by analogy with the developments in Section 5 Part I is now obtained by the 
inversion of 

This equation yields 

*'>;*,-,/*> =  -^£ • e 
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whence ultimately 

x       C r   T  Art VC     +    a^^>-C   ) 
'   ' ' ?' 2na     L.    {it x {A-A)}  t^***^ * f *K\ * a ( VAi» + ?.'} >c^t £„ 

the summation in the last two equations being extended over the roota of the 
same transcendental equation as in the previous ease. If we put h,*0or h,= °* 

we obtain the solutions appropriate to the eases where the boundary s»0 is 
either impervious to heat or kept at 0°C. Finally for reasons previously men- 
tioned the factor \     in the above expressions of ^ and u must be replaced 
by-hj. 

Accordingly the desired solution actually becomes 

•   I   t • e   "*    ff ? f J,i); t-x; df di) 
-90 

where the summation extends over the roots of the transcendental equation 

(if* - a*A' j t**.^    - 2aJ^C - 0 . . 

(In the fitoove two equations we have written h ibr h, •) 

Case 7. -"' ' 

Initial temperature f(x,y,»)jboundaries s=0 and s=« radiating into a medium at 
0°C, 

He put *»v1-fv2+v3 where 

X^  v, ( x,%. ,y,ti   » -H<<»y,>J 

4&   =   0     f6r        ^   r   0     and       }   =  <L 
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ff » * 1 *-. * *'J fe- >    -    C 

a? - - *"- for >    =    a 

Ol't       _         u fc i   =   0 

for > a a 

It is than readily seen tbatt 

The function v±(x,jt%it)  is identical with that cf Case 4. 

The expression for v (x,y,s;t) may be obtained from the expression of u(x,y,s;t) 
of Cane 5 by replacing <p  U,y;t) by -»l(x,y,Oit). . 

The expression for ^(x,y,«;t) may be obtained from the expression for u(x,y,i;t) 
of Case 6 by replacing <p (x,y;t) by -Vj(x,y,a;t). In obtaining the expressions 

for v cad v_, it should be noted that "j"-*,* 

Part IV. Heat Conduction in the Domain D," {-*- < x < «>, 0 < y. < <*> , 0 < ^ < a.) 

The problems to be discussed below are the three-dimensional extensions of those 
in Part II. Once more we shall confine ourselves to the derivation of solutions 
of problame involving one nonhoaogeneous and (in this ease) two homogeneous 
boundary conditions without however attempting t  exhaust all possible com- 
binations of boundary conditions of this type. As heretofore a "u" solution 
signifies a solution vanishing for t=0 end satisfying the prescribed boundary 
conditional also a "v* solution denotes a solution satisfying the prescribed 
initial condition, I.e., in this ease reducing to the function f(x,y,s) for 
t»0, and three homogeneous boundary conditions, two of which are identical with 
those originally given and the third being obtained from the giver, nonhoaogeneous 
boundary condition by replacing the second member of the equation expressing It 
by zero. v 

a 

The subsequent developments will follow quite closely the developments in Part II. 

It is readily seen that from the solutions of the problems in Part III we may 
derive at once tbe solutions of corresponding problems for the domain under 
consideration. Specifically by replacing   f °" d>, ^   f"  H> 

and the factor g      *7 e "** - C *"      w* 0Dtein tne solution of a 

problem in which it ie required that the boundary yO be kept at 0°C. Similarly 

u 

! 
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by replacing  J  drj  ty  I  dr2  «*  e     *0T  e ""* + e 
tut 

we obtain the solution of a problem in which it is required that the boundary 
J«G be impervious to heat. It will therefore suffice to discuss problems in 
which the boundary y*0 is neither kept at 0°C nor impervious to heat. 

Case 1. 

Boundary y=Q kept at temperature <p (x,ijt); boundaries s»0 and z*a kept at 
0°C. Initial temperature f(x,y,s). 

For a function $ (x,s) defined in the domains -«>< n < <*>, 0 < y < a, we hare 

the representation 

eat. 

where  \. = •^K:  . From this identity it follows that the Laplace transform 
T>f u(x,y,Zit) is 

u-* f x , M , •) ; £) = ~  )_ '****' * > 7 °'a / ^~ " C d C 
/>, = / 4 

where ^ » JJ*_L^_» T*  » ^e *a8t equation yields 

(A) fc 
i 

! 

where 
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It is known that 

(SN equation (31) in A ) 

Substituting the abov expression of '/•     in the expression for u and making 
use of (20) ve ultimately get 

• / e *" • e  *   P ( 5,C;t -T) • l" dT . 

It Is obvious that the solution flfe,r,z;t) may be obtained fron the corresponding 
expression in Pert III Section 1 Dy replacing f°" d_  by  /  dn 

and the factor   P *"   by   e "*  _   e      • **»• 

)    "   =   l   ) A^>   —r* 4     ' 2naAl       L a 
vU.n.iitl = -'. n » 

(~f --^   •t%Vri | 
/  e   cK   < -    - e     do 

K,'),-»; 

Case Z. 

Radiation at the boundary y^) into a medium at tamparature (p (x,ift); bounda- 
ries v*   and x*a kept at 0°C. Initial temperature f(x,y,s). 

Compering the present problem with that discussed in Part II Case 3, we are 
led to the conclusion that the Laplace transform u* is given by 

c 
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It follows that u(x,y,s;t) is giTen formally by equation (A) of the prerioua 
cast, where now y   la girtn by 

/0 r'/n A, 

whore 

•f5" 
Coaparinf with the deTelomente In Pert II Ceee 3, we conclude 

* • 

Subetitutlng this eipreesion for   ]l/   In (A) and making use of (20) ve obtain 

The Btsthod of obtain'~~g the aolutipn y(x,y,s;t) Is entirely sladlar with that 
of Part II Case 3.    *• have Hb-^fc ***** 

*!•••>.•*"  =  J777T   I 

J     e d§  J    j e *-  e ) d>, 

U 



T 

- — \ 
I 

IfiVORD Report 2159 

and where v2(x,y,*;t) may be obtained fros the above expression of u(x,y,»;t) 

by replacing (p (x,»it) by -^(xjO.sjt). 

Case 3. 

Boundary yC kept at temperature ^(x,*jt); radiation at the boundaries *"C 
and *-a into a medium at 0°C. Initial temperature f(x,y,s). 

The method of deriving the solutions u(x,y,i;t) and v(x,y,«it) is entirely 
similar to that of Case 5 Fart II. For the derivation of the "u" eolation we 
puttt-^ + teg + tt, yfo9T9 

*,<*, °, >;T) = ?<**};f) 
iHi    -   0        * ST     \ - 0   a r d \.  - a- 

•? o 

r 0. «}      '  '     I 0 -fcr   ^ 

a>   ,u*   \& U)  (x, y,a.;t;   for ^ : O, 

The solution u-(x,y,t;t) may be obtained from the solution u(x,y,s}t) corre- 
sponding to Case 1 above,by replacing sin 2J1-*   anc sin   fi" ^   by 

cos  /*7T?  and cos  ""-^ C, respectively. Thusi 

'0 

The solution u^x^sit) may be obtained from that corresponding to Case 5 
Fart III by replacing  ? 

-u) 

l[ d\  J>)     by    /   d$   I   d0     ,        p r*,y;fj       by 

(*,y, 0;tj      end        e by       e     '"      -   e    ""     -        **»* 

u   f x    U   v t )   =     -A.     f  sMa/,^V.(. -^„   -  C> ^Wj^JiLJ  

/   e • e •     e -k ?   r /   ",r /    "•. I ~, *),('•/•• •T)  dn 

45 
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where i   * 1 and where the summation extends over the roots of the transcen- 
dental equation 

( a1^ ' V  > ^-" '  * ( A "MS * D  • 

In entirely similar Banner the solution u^^y^t) nay be obtained from the 

solution u(x,y.z;t) in Part III,, Case 6 by substitutions identical with those 
for ui(x,y,zit) above. Thus: 

u||„    ..t)   -      J±    C     SeJJLfgJi 5n   *    <Lk*ZtMA  
a* '****      ~    ana. L   {j/^a-Ail^lWAVMV^^.'l^^ 

0 -oo     ft 

where i » 1 and the summation extends over the roots of the above transcen- 
dental equation. 

If in the above expressions of u. and u and in the transcendental equation we 

pat lu » 0 or h_ * <** we obtain the solution appropriate to the cases where 

the boundary s*a is impervious to heat, or is kept at 0°C. Similarly if we put 
hj * 0 or h^ • «s  we obtain the solutions appropriate to the cases where 

tiie boundary s*0 is impervious to heat, or is kept at 0°C. 

For the derivation of v(x,y,*jt) we put v • v, + v whsr*> 

*J^T "* (x »* > >>t} * *(*• >» v 
•   '•-.» 1 

y15 =0   for      }=0   and     ^i 

1r. r[   K.O^-X)       *    0 

I , 

§» -V,   *   *^«M»M^    f?"    *»* 
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The expression for vAxtjt*it) may be derived from that of v(x,y,x;t)  is Case 1 
aboTe by replacing elo     & S }       and sin        *fff        by coe        ^^n) ana 

a a. a. 

coe      ^~ -       respectively.    Thus: 

n'   v   • 

• /     e        d§ f.;;1^*. je'wV, £•!?.,,{>--* «f*« 

where   i = 1. 

Comparison between the boundary conditions satisfied by V2(x,y,*;t) and those 
satisfied by u,  and u- above, leads to the conclusion that 

where ttj is obtained from uj^ by replacing u-(x,yfO,t) by T.(x,y,0,t) and where 

C2 is obtained froa u2 by replacing ty's^s^t) by TX(x,y,ajt) where •1(x,y,iit) 

ie given above. 

Case U* 

Tssiperature gradient jp  (x,s*t) on y*0; boundaries s=0 and s-a kept at 0°C 
Initial temperature f(x,y,s). 

By analogy with the developments in Case 1 the Laplace transform of the solution 
U(x,y,*;t) Is 

where ^J ^ Jt •<*'*• r,"  and 3^ s -£^*- . Prom the last equation we get 

'Vin ^fT ^ 
*—— 0        * c 
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where    \y    is obtained frcn the Invasion of 

By analogy with the expre«aion for the function   V    of Fart II, Caae 6 we 
writ* at once 

VyiC-.iJ -- *•« 

whence ultimately 

f    _     (.-»'« y' .     Ar'n't 

W c ¥• f ?, C ; t-Tj I' dt 

The solution v(x,y,*it) la identical with the solution v (x,y,*,t) of Case 2. 

If In the above expression* for u and v we replace sin    •? ff£     and sin    — - 

by cos      /nn^    aad QOB     2 n f    respectively we obtain the solution appropriate 

to the case where the boundaries t"0 and s»a are impervious to heat.    Similarly 

if we replace sin    m7'>    and sin      ~n Z   by sin IZ&tillL} and sin    <**>*'>"$ 

ve obtain the solutions appropriate to the case where the boundary e=0 is kept 
at 0°C while the boundary *=a is iapervious to heat. 

Case 5. 

Temperature gradient y  (x,*jt) on y»€); boundaries *=0 and **a radiating into 
e medium at O^C. Initial temperature f(x,y,s). 

The derivation of the •«• and •*• solutions is similar tc that of Part II, Case 
6. For the derivation of the "u" solution, we put u» u, + tu • iu where 

dJj    z   0        for     %  r 0    and    H z * 

I 
iH.    -.     **l    =    0 for       u   z   0 
0 \j >> f J 
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,      _ s y,u, for   }'-0 

C for      ^-0 

<f 

The Laplace transform of u- say bo obtained from that of the previous ease by 

replacing sin       ynn>      and sin    -—-1-   by ooa        ""•"•?     and coa        g ^" 

respectively.    This leads ultimately to 

/ -I / \ "in i I /n it C     j f 

*       ' 7   ?' nu     l_ a        J a 

I i »«t ' a1 .       -i 
j   df       e • e M 5.sjt-T) l   di   . 

The solutions u, and u_ are formally identical with the corresponding solutions 

of Case 3, except that now £ » - 1, n-, = h, h2 = -h and u* is given by the 

above equation. 

The solution v(x,y,«*t) is given by V • v^ • v_ where v la obtained from the 

corresponding solution of Case 3 by putting <$ = -1 and where v is obtained in 

identical manner as that described in Case 3* 

Fart ?. Heat Conduction in the Domain D "' 

(  0   <   x < 00 ,0< •<£    <     <*>  t    0    <a  < a J 

If In the solutions of the problems in Part IV we replace   /  ^ ?     **y 

/ df     and the faotor  e  **r    by  e *"*  1  e  •*' we obtain 

at once the solutions of corresponding problems for the domain under consideration 
for the cases where the boundary *•<) is Impervious to heat, or kept at 0°C 

For this reason and because of the geometric "similarity" between the boundaries 
x«0 and yO it will suffice to confine ourselves to the discussion of problems 
in which the boundaries SFO and y*0 are neither impervious to heat nor kept at 
0 C. As heretofore, it will suffice to confine ourselves to the discussion of 
problems involving a single nonhomogeneous boundary condition. 

A9 
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Case 1. 

Boundary yO kept at teaperature     'p (x,z;t); boundary irt radiating into a 
Bedim at 0°C;  teundaries **6 tat mm kept at 0°C.    Initial t«peratur« f(x,y,»). 

DeriTOtion of ths »u« solution. 

In order to obtain the solution u, we put u • IL  + a     where 

J^    -      0 (or *:0 

' 

u 

f&   s.=AJ-«,**,) for     x = 0 ox * 

The solution U. »ay be obtained from the solution » of Part IT, Case 1 by 
aeraelng    tp  (-x,») *    ^ (x,i).   lie thus get 

•   "<">*,>;n   =    -^i   £^^/4^-^  d^/~d* 
,* . JL_   . **yt 

The solution u^ Bay be obtained froa the solution u of Fart IV, Case 2 in the 

following aannert 

..^- ' 

• 

i 

a. Interchange x and y and replace f by r,  and  / df  by / an . 

b. In the expression thus obtained replace the factor e - by 

e     *  e      and the function £/> (x,Ejt) by - u2(0,y,s,t). In this 

Banner we get 

r,    „ u*Pf 

• • 

* 
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where £   • -1. 

Derivation of solution v(x.v.»;t) 

In order to obtain •, we put • • v. + •- vh«r« 

Xi m.   fly; ( X  , U , x ;  t J     *    f  ( X ,  Ij., 5.) 

/^r   r   0        for      u s 0 , K • 0      and     y - 0- 

5s- <> ox 
for      x  r0 

Tltn,   AT (   X      -u.     3.; t )      =     0 

/L-~   ~   0 +cr       i} • 0 , I  - 0     and     ^ * a. 

for     X  * 0 
ox -        f ' 

The solution v. aay be obtained from the corresponding eolution of Part IV, 
Case 2 by interchanging x and y and by replacing in the expression thus obtained 

! b7 T) ,   £ C»£  by  f*..dij 

e    - e 

In this Banner we get 
an 

^ (  X , u , * . t)     -       ' ^  ) 

and the factor  e --*&* by 

jdJ.iT- 
y»n y a' 

Lie    ^e    I** It*     + e     I *? 

/ m,%c; ^ *f* ^ 
with 6   * -1. 

The function v may be obtained from the expression for u, by replacing 

ttl( ° 7 %,  ? J * ' T ) by ^< & , I ,"£. £ -T ) where ^ Is given above. 

If in the above derivations ve interchange x and y we obtain the solutions 
appropriate to the case where the boundary s>€ is kept at temperature <p (y,*;t). 

The boundary y=0 radiates into a medium at 0°C and the boundaries z=0 and z=% 
are kept at 0°C. 

I 
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Case 2. 

Boundary XPQ rediatet into a MUIUB at 0°C| tespereture gradient     <P (x,»jt) 
on 7«C; boundaries «•© and s*a kept at 0°0.    Initial temperature f(x,y,i). 

Is ordar to derive the "u" solution, we put U « u» • u- vhere 

4"^     -     0 for       «    >   D on 

u, ( * , «, 0; t)    :    u., ( x , y , a; t J    =    o 

^iJ   .-    -Mix,* uj f,r      X   -   0 
o * 

^    =    0 for      v --  0 

u,(* ,tj ,0;t/    --    u.t (» ,y,a; tJ   =   0 

The eolation u. HJ be obtained from the solution u of Part 17, Case 4 by 

df;  by / di,    and the factor e by e    •- e 

Thus 

The solution u is formally identioal with the solution u of the previous 

case, except that now S  * 1. 

In order to obtain the "v" solution ve put v • v. • v2 where 

-1 • o •  ft- > • o 

— , 6      rttr  y«0 

= 0       for       \   -   0       and      T)   = 0. 

52 
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•for 7*   3 

/IT   -    0          * 0 r :  fi and     J. = a. 

/ for      3   = C 

4^n —j-* O^ 

£*-£&&* •''<**> «•»'>•?'« 

where   /^ . yj ± .   ^  <   y'       and   ot^ 

53 

The expression for v^ is identical with that of the previous case, except that 
now  <5 * 1. The solution v. may be obtained from the solution u2 by replacing 

M 0,C,C;t-1) by •! ( T, r,*;T-t). 

If in the derivetions under Case 1 and Case 2 we replace ain *%}•   «°d 

,jji  iS^2 T by cos " n +    and 000 ^.n.Z      w« obtain the solutions appropriate 

to the cases where the boundaries s*0 and swa are impervious to heat, the other 

boundary oondltione being the sane as before. Similarly if sin  -^A  and 

ain  '""S are replaced by sin   ^<-" ^T>"   snd sin   ( * ^ ' ilJ-S 
» 2 a la 

we obtain the solutions appropriate to the ease where the boundary *=0 is kept 
at 0°C while the boundary *•* la impervious to heat. 1 

Part VI Heat Condition in the Domain D '" f 0 2 * < 0., 0±^«*)~.***y<~>) 

Case 1. 

Boundary y=0 kept at temperature p  (x,=;t)j other boundariea kept at 0°C. 
Initial temperature f(x,y,s). 

Derivation of solution c(x.v.»;t) 
1 

By analogy with the developments in Part IV, Case 1, the Laplace transform of 
u is 
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The laet equation yields la the usual Banner 

I   X 

U) 
**•*     "^^P"    d^ 

where the function y>   is obtained from the layersion of 

/• e  '/•• ( y: I , ^. ; * ; dt 

In view of the devflopsents in Part I, Case 1 (equation (16), (19) and (24)) 
can write at once 

1 
I 
i 

I 

-*<**• 7Vt 

£<>?*' where 

I 
#.-rr.Tt~t 

ynz.   s4-L~?l. 
/r>^n 

I •• 

With the aid of the last two equations and of the identity (20) ve ultimately 

w ao 

VTTX        \        \^ /run A • /mi .. 

VP = ' /IT, '•   I 

^^   /   dC   /   p(.t,r;X-V • e   * 
•/meu *o A 

>d^-rv 
# 

i 

dX 

11 

Derivation of solution v(*.T.»:t) 

As in Fart III, Case 1 ve hare 

AS I *, H , } •> T ) n 
|(Ug d;6rtd$ 

I 

III    » /C0tt«t( * -f) AAr*p I'y-^Jxuro. * ( \"C)   deed/id I' 
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where by analogy with the developments there the function cf> anat eatiefy the 
oondltiona 

I 

0   <    x   *  ft 

«*», r * >, .t a, •• i, ...   *• 

0 * v ** 

/»n- =   £ /, *  2 , 1 J,    •••    t« 

With the aid of identity (20) and of the la at four equations, the solution 
Y(x,y,s;t) beeomea 

-t* 

*•< *. *» "*»* }   -"    IT^TtF   Le " 
r~ -<*# 

/ftf f r  • ^V^' ( «  >   ^   •   3-rai1   • 

dr 
• i 

I    drl 

E 

Making use of fcfcs i£«ttt4tiea (36) and (36') the laat equation ultimately becomes 

,v ( x , <j, y, :! 
.J3L 
\ > 2. tO^iV              yO/JtV       —T~T 

a. Jc 

Case S. 

Temperstura gradient p (x.ajt) on boundary y»b; other boundariea kept 0°C. 
Initial t^aperatur* f(x,y,i). 

^-<^tioa of solution nf».y.«ft) 

The counterpart of the expression for u* in Case 1 ia 

'•••• ' 0 * 6 

/; ^4^T   • Ptf.ZiP  **•**}'& K 4r '-^A/ 
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where  A = -/i * "<-' • »' 

The Boiution u(x,y,a;t) is formally given by equation (A) of Cat* 1 where nov 
y» is obtained fro* the inversion of 

,''r 1/ /,. . f  ~   VI Wt  .     &2*£*X 
r     - r 

As in Fart III Case 2 we have 

2 (-')  e   "ir~   ^— (L*±An#      . 

Making usa of the above expression for i/    and of identity (20), foraula (A) 
of Case 1 ultimately yields 

u '* ,  ¥, >; r;^ [ I ,w-r"/* *^   ^ i2~;r» 
m:'       *n:  O 

('<-- ^ <">   [\  ('*<?,?; * \ -fcr- p—. 
L.' e    e 

e T ' dT  . 

Derivation of solution v(x.y.»;Q 

As in the problem in Part III Case 2, the desired solution is identical with 
that appropriate to a doaain identioal with that of the previous ease, except 
that now y ranges fron 0 to 2b, the two bounding pianos y>»0 and j*2b as wall 

at 0*C, as the boundaries vd and x*« being kept at 0°C, the initial temperature 
$ (x,y,s) being defined aa follows t 

$(«,W,\y -*(*,&.3^    f or 0   <•    y    •*•    & 
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Starting with the expression v(x,y,*;t) of the previous case, we ultimately gett 

»-' (*.'}.->,:!!     -        1 -     \        \    4<n,    2-2-i    *vn.    UaUJjJLZ A t •i      •>. • : I       r      •    - ) )      d< K      ^——      >*«/ru      in ,--,• 

as, 

Case 3. 

Boundary y»0 radiates Into a •edits at temperature y  (x,»;t); other boundaries 
kept at 0°C,Init'»i temperature r(x,y,»). 

Privation of solution u(x.y.»;t) 

By analogy with the developments In the previous cases and In Part III Case 3, 
the desired solution has for Its Laplace transform the expression 

/" ±±^^!±iiJ   »* (5 n .A; >^ * /», - o d? 

vfcere  /^ = ^ £ . «7 . /'   and  «m    ^ 

The Inversion of the last equation yields formula (A) of Case 1 where now if 
Is obtained from the Inversion of 

The counterpart of the formula for "f In Part III Case 3 las 

? (  y; *, »v. ^ • 2 AM e 

* i 
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Substituting the above expression of f in formula (A) and asking use of 
identity (20) the desired solution becomes 

QQ     co 

mil     m si I v **" I •>•*' 

[ — ^ df / dt: I  ^(1,^-t-V   c 7x 

where the  C — 'e are the roots of the transcendental equation 

Derivation of solution T(xay.g;t) 

We put v * vj^ + v2 where 

ft? "i(*>y>y>tJ  *  ftk>f>}> 

su;  I  A t  &}   X; t)    = 0 

an -LA       tor   y= 0 

t +0 *   >/><?' 

[ js. = JKv,^; for /. o 

The solution T^(x,y,zit) is identical with the "v" solution of Case 1 provided 
that y now ranges froa -b to b and the initial temperature  <f> (x,y,») satisfies 
the conditions 

$ I *• 3*x,},y) .   *    f (x,y, V   1        O.s x s a, 

( 

$( *,f *.*•**,>>  - (l*,V,}> I        ° - V -* 

* 

(See also Fart III, C*«e 3) 
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Proceeding as in Case i, we get 

^J1 

dC 

• n r }. i L 
. la - i - j«*./  . ii'f -;»''' 

1 H, 

'0 I i-r- l 

( m r, - £**M - i4P» »>-» -»<^)' 

f- e 

(llfl) -^^-ia)'        ln-l;-**^-^) - W **f 

- e drL . 

Making use of (36) and (36*) the leet equation becomes 

*?'«•*>>;"  *   ;ns7*j!T  I f^'2^ "" u^f^- 
met       mi=t 

'J^-*^ d? /%*• r^;;JT"? *i-F*n^,^ e^" <n 
J-OO 

The function V2(x,y,s;t) aay be obtained fron u(xfy,sjt) by replacing u>  (x,ajt) 
by -^(x.OjZit). 

Case 4* 

Radiation at th*? boundary y*0 i«+/» • »^4iw» at tesperature # (z,8.;t) j boundary 
y=b iiapervious to heat; boundaries x*0 and x=a kept at 0°C, Initial temperature 
f(x,y,s). 

Derivation of solution n(x.v.z:t) 

The solution u(x,y,s;t) is once more given by forswia (A) of Case 1 where the 
function f   is obtained fron the inversion of 

fe'%U-t *„ r)dt =  - *^£±&JJ&± — 

where A     s    tj f 4 <**. 4 tx and   oen 
/n/n 

a. 

' 
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By analogy with the expression for f   in Fart III, Case i,,  we have 

* (  ?;*, <*~, *-j 2 A* 4 e 
-*(«» • y •c-in, A1 

{( / + *t,) *t,   *    %*} *lm.  c 

where the     i^'s are the roots of 

5   tan   i;   • bh. 

Substituting   tf/  in formula (A) and using (20) the desired solution becomes 

0* o& 

u(x,u,ytt}    ,     JAM   jy^lllJi     **•"*<'-*{ £ 
A^=:     m\-1 

I ^ aai 61 f dC /  pfS,?;*-tJ 61 

We put v • vi + v2 wbsre 

fe   -n <*•» ?>£:n    *    f[*>}>}> 
drj; =    .0        f i^-0     and 71   =   A 

As- tir        x z  0     and       x - a 

aOfcT*.      /V   (* * 
t-tO 

inr. 

*> }> 
t)   =   0 

-   0        for      &'•?••& 

h{wt *Afl     for    \L s 0 

/uj   =    0       for        x  =  0     and       x * a. 

The procedure for deriving ^ is similar to that for the derivation of v in 
Case 1, except that the function   <£>   oust now satisfy the conditions 

0   •£.   X   £   CL 

<    f 2    • ? 

0    i   u   •£. b 

mv -   0 f * I  * 2 j .. 
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Proceeding as m Cs.ei 1, we get 

l^Sl1        ra.r .aa.      . )< - f •)«<)'        __   LaJtl zlssJL 

f v f  • v   'tin ~ • TO 

'(*;,'[,U  )  e       - e dn 

Making use of the identities (36) and(36*) the last equation ultimately becoaes 

The expression for VjCx^jZjt) may be obtained from the expression fbr u(x,y,sjt) 

by replacing {? (x,*it) by -*x(*»0t*»*J« 

Gas* 5. 

Radiation at the boundary y*0 into a medium at tsKperature ^ (x.zjt); boundary 
y=b radiating into a medium 0*0 j boundaries x=0 and x*^kept^at 0°G. Initial 
temperature 0°C. 

The solution u(z,y,t;t) is given by formula (A) of Case 1 where f   is obtained 
from the inversion of 

wliere as before        J3n  « *J j-  * »l * X1      and /nn 

(The second member of the last equation is the counterpart of the corresponding 
sxpression in Bart III Case 5 with h^ = h and h2 * -h) 

i 

: 
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By analogy with the expression for V *n Part III Case 5 we have 

l  +i» ' 

H-  f v ; l , «-,»> ^*-> 

where the summation is extended over the roote of the transcendental equation 

Substituting the above expression of f   in formula (A) of Case 1 and using (20) 
the desired solution becomes 

,       j.  ,     X'K v A        \      V  •  /»ni u ( *, vi . -K • t  )     -        /—-  /   ) .^n. —— 

/»?"'   ;J-:' 

/ dC / f (H-.t-T) A' a' ^^r    (jl e    e    vT 
-a 

where the Cjs are the roots of the above transcendental equation. 

Case 6. 
-, 

Radiation at the boundary y=b into a medium at temperature <p   (JC, tit);  boundary 
y=0 radiating into a medium at 0°C$ boundaries x=0 and x=a kept at 0°C, Initial 
temperature 0°C. 

The solution is given by formula (A) of Case 1 where IJJ   is obtained from the 
inversion of 

r •**• „,   • „ riat _    -Aax^i^f A4^uj 
(/C • f,*)<U*JljS„4 *•  lAfi„, <*%*,& + 

(The second member of the last equation is the analogy of the corresponding 
expression of Part III, Case 6 with h^ «• h and h2 

s -h) 
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By analogy with the earpreesion for \f   in Part III, Case 6 ve have 

where the  tV's are the roots of 

Substituting the above expression of f in formula (A) end using (20) the 
desired solution bee 

... ' 

where the  v,'s are the roots of the above transcendental equation. 

Case 7. 

Initial tempera tin w f(x,yf»)j boundaries y=0 and y=b radiating into a nediun 
at 0°C) boundaries pe and x«e kept at 0°C. 

! 

The procedure is entirely eiadlar to that of Part III, Case 7. We put 
• * Vj • v2 

+ T3 where 

jf&  •« 0   f0r  JJ. r 0.  and  y - £ 

/i/'-0  for      x   s  0     and  * r o- 

I 

If -- A(*t:»t)      for   y * 
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j- "   '•->, for *   :t 

I      I 
I 

I     I 

3^, 
V 

<? f; yj- V?^ for ./Sfr 

/»J-4    :   >V-    -0 TO' X     :   0 and .*     .?    Q-      • 

It is th«n readily seen thati 

The solution v, is identical with that of Case 4. 

The expression for v2 may he obtained froa the expression of u of Case 5 by 

replacing  p (jr,t;t) by -Vi(r,0,s;t), 

The expression for v, may be obtained from the expression of u of Case 6 by 

replacing <p  (x,s;t) by -v^XjbjSjt). 

If in the "a" and "T" solutions obtained in ths preoeding eases •« replace 

sin - ^J-5-  and sin  - "* r* * by cos -^-p-   and cos —J1 respectively, 

we obtain the solutions appropriate to the cases uhsre the boundaries x*0 and 
X"W are impervious to heat. Similarly if we replace sin  - ~ g a       and 

.in   giZLt.   by sin  f?/r-*',ff>  and sin  (J n * U a ;     respectively 
ft 2 a 2 a- 

we obtain the solutions appropriate to the cases where tho boundary rO is kept 

st 0°C while the boundary x«a is impervious to heat. 

Part VII. Heat Conduction in the Domain D. 

( 0   5 x   i  a ',  0 S u f > ,  C 5 J < ^ ) 

Part 71 us replacs >    < 

and the factor  e by  e    ± e 

If in the solutions of the problems in Part 71 us replace >    dC 
-XUT J~  -ifc*' 

by  / dC 

we obtain the solutions appropriate to the eesee where the boundary s>0 is 
either impervious to heat or kept at 0CC. 

It will therefore suffioe to consider here problems involving radiation at the 
boundary **0. 

Case 1. 

Boundary s=0 radiating into a medium at temperature <p  (x,yjt); other boundaries 
kept at 0°C. 
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For a function 4 (x*?) defined 1A the reotangls 0 < x  < a, 0 s u < i and 
raaisaing ca the sides of the reotangls ve havs the representation 

* (*.»J = -TT 5 T — ^P- a /r 

•>0       -'fl 
•a-t,^   * • x>/--«--   j—f an 

=• .— 

Fron the above identity, it follow* that the Laplace transform of u(x,y,zjt) is 

fT\l*      4n.-| 

<**   ^ d5 / p^j- 9> t\.H»   — «J* <*i 

1  -    »~>^- v FM7^ rfn^i 

From the last equation, it follows that 

»'«.•»*««> - 3r >-) ~'~ *5*" • ^ *r> 

J„ - 'o la 

. •  I 

1  I. 

where f  ( .jj. • t, rmflL    ) is obtained fro* the inversion of 

* ) dt r 

- *, . J 

*«M   *   * 

! 

i 

I 
By analogy with the expression for ?/•- in Fart II, Case 3,  ve have 

i 

 .+"         X!  .    \> 

Vf v.r.*-J "« -e =1= • / ^(M#) e • dp 
It jnkt )o 
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Substituting this expression of   f    in the formula for u(x,y,z;t) we obtain 

gg      ao 

U^'^'   ;    "   UT^T   L.L ~«~ ~^ 

<f 1 r,^; t •%) &i  I   e    ( j •/>;  e   *
T  dp 

Derivation of solution v(x.y.z;t) 

We put v • v. + V2 where 

±±   - 0  for  5. s 0 

'£*=•£, tArL *• AT;) 

*} 

The solution v^ nay .be obtained from the solution v of Part VI, Case 1 by 
r" Y- - ($•-&* i&sMX -     U££L' 

replacing / d§    hy 1    d£   and the factor e ^**^  '07 J «*< + Q^**^ 

The expression for v may be obtained froc that of u by replacing (p  (x,y;t) 
by -•i(*,y,0jt). 

If in the expression for u(x,y,Zjt) and v(x,y,z;t) we replace 6in "V"*' and 

Bin -^-2-L   by cos ®<®&        and cos ."irftl        respectively, we obtain 

the solutions appropriate to the case where the boundaries x*0 and x=a are 

impervious to heat. Similarly, if sin • yrx-T}* and sin  m f f   are replaced 

by sin Lg^SAtlS^  aud  <7 *• * '> ®4-   we obtain the solutions appropriate to the 
2a. Xa, 

case where the boundary x*0 Is kept at 0° while the boundary x=a is impervious 
to heat. The expressions obiainsd from "U* solutions and "v" solutions by 

replacing sin *Sff*   and sin ^-£4   by cos -*&§^ and cos  -*-frq 

or sin  (•?""• ^)vf      and sin JJLSULUJL^—      ^^  similar meaning. 
3 A iJ>s 
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In conclusion it should bo stated that the aethods employee in thin paper ere, 
not applicable to the oaae where radiation takes place at two bounding plane* 
which are not parallel. 

lew Tore City 
June 1951 

67 
I 
i 



IAVORD Report 2159 

1. H. S. Ceralaw "Math. Theory of Conduction of Boat in Solida". 

2. a. 8. Caralaw and J. C. Joogar "Operational Kathoda in Applied Mathematical 

3. G. Doetaehe Mathojnatiache ZeJtacauft. vol. 22 (1925). 

A> A. •• Lowan "On So«e two- and Three-Diaenslonal Problem, in Heat Conduction". 

66 


	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075

